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In complex systems of first order reactions within porous catalyst particles in the 
presence of Fick’s law diffusion, the experimental data will always appear to come from 
a consistent set of rate constants although these constants do not represent the proper 
rate constants for the chemical process. This fact enables one to use the same methods to 
compute the performance of various reactor designs both in the presence and absence of 
intraparticle diffusion effects. Solutions are presented for piston flow and stirred tank 
reactors in terms of t,he characteristic species. The results show that diffusion effects will 
often produce marked changes in product distributions and apparent catalyst selectivity. 
The apparent sequence of reactions may be extensively modified-some consecutive 
reactions may even appear to be parallel reactions. 

I. INTRODUCTION 

Part I of this paper (1) discusses the in- 
fluence of intraparticle diffusion on systems 
of coupled first order reactions occurring 
within a single catalyst particle. Expressions 
were obtained for the over-all rates of reac- 
tion for the entire particle in terms of the 
concentrations ambient to the particle; 
these concentrations were considered to be 
constant over the boundary of the particle. 
The rates of reaction were shown to be linear 
functions of the ambient concentrations such 
that the overall rate of reaction of species 
Ai per unit volume of catalyst is Z’j(kij+aj 

- kji+ai). The constants. h$, are the dif- 
fusion-disguised rate constants and are 
functions only of the intrinsic rate constants 
Icij, the diffusivities Di, and the particle 
geometry; they are independent of the 
ambient concentrations. Thus the rate of 
change of the ambient composition vector 
a in the presence of intraparticle diffusion 
effects is given by 

da/dt = - K+a (1) 
where IL+ is the matrix of diffusiodn-disguise 

rate constants. The ability to characterize 
the over-all rate of reaction for each par- 
ticle, in the presence of diffusion effects, by 
the diffusion-disguised rate constant matrix 
of Eq. (1) enables us to discuss readily the 
influence of such diffusion effects on the 
performance of various types of chemical 
reactors. The discussion will show that, if 
diffusion effects are present, marked changes 
in the product distributions and apparent 
catalyst selectivity may occur. The apparent 
sequence of reactions may be extensively 
modified-some consecutive reactions may 
even appear to be parallel reactions. 

We shall limit our discussion to stirred 
tank and piston flow reactors. By stirred 
tank reactors we shall mean a reactor in 
which the residence times of the molecules 
in the reactor are distributed exponentially. 
By a piston flow reactor we shall mean a 
reactor in which the residence time of every 
molecule has the same constant value 7. 
The influence of diffusion on the performance 
of reactors wit.h other distributions of resi- 
dence time can be determined by methods 
described by Wei and Prater (2). 
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II. THE INFLUENCE OF INTRAPARTICLE 
DIFFUSION ON THE PERFORMANCE OF 

PISTON FLOW REACTORS 

A. The Integration of the Rate Equations 

Equation (1) can be applied to a bed of 
catalyst particles in a piston flow reactor if 
the concentrations ambient to a catalyst 
particle are assumed to be approximately 
uniform over the distance of a particle 
diameter. The time variable of Eq. (1) is 
related to the space variable s, which is 
measured from the top of the catalyst bed, 
by t = s/v, where v is the linear velocity of 
flow of the reactants through the packed bed. 
This gives for Eq. (1) 

da(s) --= -- 
ClS 

; K+a(s) (2) 

where K+ is the rate constant matrix per 
unit volume of catalyst and j is the fraction 
of the bed volume occupied by the catalyst 
particles. On the other hand, when diffusion 
effects are absent, the equation that applies 
is identical to Eq. (2) except that the dif- 
fusion-disguised rate constant matrix K+ is 
replaced by the true rate constant matrix K. 

The integration of Eq. (2) over the re- 
actor space variable, s, is best accomplished 
in terms of the characteristic values and 
vectors of the rate constant matrix K+ (Wei 
and Prater, ref. 3). Let X+ be the matrix 
of characteristic vectors of the matrix K+ 
and A+ be the diagonal matrix of charac- 
teristic values with elements designated so 
that X1+ = 0 6 x2+ 6 X3+ 6 . . . < An+. Ac- 
cording to Eq. (I-32), where I designates 
Part I of this paper, we have 

Kt = X+At(X+)-1 (3) 

When diffusion effects are absent, we have 
the corresponding equation 

K = XnX-l (4) 

Let a(0) be the composition vector at s = 0; 
the integral of Eq. (2) is then (4) 

a(s) = X+ exp (- jA+s/v) (X+)-la(O) (5) 

where exp (-jA+s/v) is a diagonal matrix 
with diagonal elements ( 1, exp (-j&s/v), 
exp (-.&s/v), . . . exp ( -fLs/~> 1. 

The matrix of characteristic vectors X+ 

enables us to shift, to a system of characteris- 
tic species. This changes the system of 
highly coupled reactions described by Eq. 
(2) into a set of independent, irreversible, 
first order reactions as discussed by Wei and 
Prater (3) and by Wei (1). Let b+(s) be a 
composition vector in the system of charac- 
teristic species obtained from the rate con- 
stant matrix K+. Then a composition vector 
a(s) expressed in the molecular system of 
species is transformed into the composition 
vector b+(s) expressed in the characteristic 
system of species by the equation 

b+(s) = (X+)-la(s) (6) 

The reverse transformation is given by the 
equation 

a(s) = X+b+(s) (7) 

We must emphasize that the composition 
vectors b+(s) and a(s) represent the same 
actual composition; it is merely written in 
different coordinate system. Using Eq. (6) 
in Eq. (5), we obtain 

b+(s) = exp (- jA+s/v)b+(O) @I 

Since the matrix exp (- jA+s/v) is diagonal, 
Eq. (8) is equivalent to the set of 12 inde- 
pendent equations 

bit(s) = exp (-jX,ts/u)b,+(O) (9) 

which corresponds to complete uncoupling 
of the system of reactions into independent, 
irreversible reactions. The parameter, s, can 
be eliminated from the set of equations (9) 
to give 

bit(s) _ bjt(s) xi/ij 
b?(O) F-1 bj+ (0) 00) 

Equation (10) gives the fraction of the ith 
characteristic species remaining as a simple 
power function of the fraction of the jth 
characteristic species remaining and provides 
a convenient method for computing the 
reaction paths in composition space. 

Wei and Prater (3) have shown how the 
characteristic species are related to straight 
line reaction paths in composition space and 
how the characteristic vectors that consti- 
tute the transformation matrices X and X+ 
can be determined from laboratory measure- 
ments of the location of the straight line 
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reaction paths and the equilibrium composi- 
tion. The characteristic vectors of the 
matrices K and Kt are not, in general, the 
same and consequently the set of character- 
istic species are not identical. Hence, the 
integration of Eq. (2) for packed bed flow 
reactors in which intraparticle diffusion 
effects are unimportant yields a set of 
equations identical to Eqs. (9) and (10) 
except that, in general, different character- 
istic species, denoted by hi(s), will be 
obtained with different values of the decay 
constants, denoted by Xi. For this case, 
therefore, we have 

e(s) = X exp (-Afs/u) (X)-%(O) (5a) 

hi(s) = exp (-fxa/v)bi(O) (94 

and 

&(s) [ 1 
bj(s> WXJ bi(oj = bj(o) 

If the diffusivities of all the molecular 
species are equal, the transformation matri- 
ces X and Xt become identical, the matrix 
At is equal to in and the matrix Kt is 
given by 

Kt = XAnX-l (11) 

(see Wei, ref. 1). In this case, since the 
matrices K and Kt have the same set of 
characteristic vectors, they have the same 
set of characteristic species and conse- 
quently the same set of straight line reaction 
paths. Hence, although diffusion effects do 
not alter the location of the straight line 
reaction paths when the diffusivities are all 
equal, the decay constants Xi of each char- 
acteristic species Bi is reduced by its own 
effectiveness factor 

vi = 3pz-*(pi Coth vi - 1) (12) 

where 

pi=Rm (13) 

as shown in part one of this paper. Since the 
larger the value of Xi the smaller the value 
of vi, the effect of diffusion is to reduce the 
ratio of the larger to the smaller character- 
istic decay constants. As Xi increases in 
value vi approaches (3/(pi) = 3 1/D/R2h, 
as a limit. This gives us the upper and lower 

bounds of the ratio X,t;XJ in terms of the 
true decay constants X, and Xz; they are 

VW% 6 blnlX2)/2 = x,+/x,+) 6 x,/x* 

(14) 

Thus the ratio of the decay constants, 
x,t/&t, is reduced to the square root of the 
true value for the most extreme diffusion 
effect. 

If the diffusivities are not all equal, the 
matrices K and Kt have different charac- 
teristic species Bi and Bit and transformation 
matrices X and Xt; hence, the straight line 
reaction paths are shifted in this case by the 
presence of diffusion effects. This shift makes 
the relation between the true and apparent 
kinetic behavior much more obscure than 
when all diffusivities are equal. As yet no 
simple, general, and easy to use relation has 
been found between the position of the 
straight line reaction paths and values of the 
decay constants in the presence of diffusion 
effects to the positions and values for the 
true kinetics. 

B. The Application of the Method 
to Typical Examples 

We shall use two relatively simple coupled 
reaction systems to illustrate some of the 
effects of intraparticle diffusion on the com- 
position sequences and apparent kinetic 
schemes of piston flow reactors when the 
diffusivities are all equal. In addition these 
systems will be used to illustrate the shift 
of the straight line reaction paths in the 
presence of diffusion effects when all dif- 
fusivities are not equal. 

1. A Three-Component Reversible System 
With Consecutive Reactions 

Let us examine a hypothetical system 
consisting of two consecutive reversible 
first order reactions; 

A ,&AzfAs (15) 
4 1 

First let this reaction proceed in a bed of 
porous catalyst particles in a piston now 
reactor under conditions such that the influ- 
ence of di$usion on the reaction is negligible. 
The true rate constant matrix K then 
applies. The rate constant matrix K is 
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transformed to the diagonal form by using 
Eq. (4); 

(-i 1; 3 = (i,4 _p A) 

K X 

0 0 0 4/9 

( )C 

4/g 4/ 9 
0 1 0 l/2 0 -l/2 

) 

(16) 
0 0 9 l/18 -4/9 l/18 

A X-1 

The matrices X and X-l in Eq. (16) were 
computed by the method given by Wei 
and Prater (5). Reaction paths for this 
system can be computed using either Eq. 
(5a) or, more conveniently, Eq. (10a). 
Typical reaction paths for this system are 
shown by the dashed curves of Fig. 1; 

FIG. 1. The effect of diffusion on the reaction 
paths in an integral reactor. 

included among these paths are the two 
straight line reaction paths shown by the 
heavy solid lines. 

a. Diffusivity effects when all diffusi- 
vities are equal. Next let the bed of cata- 
lyst be composed of porous catalyst particles 
with a radius of 1 cm and a diffusivity of 
1O-2 cm2/sec for each reactant. Applying 
Eqs. (13) and (12) to the values of Xi from 
the matrix A of Eq. (16), we obtain the 
values of pi, vi, and X$ given in Table 1. 
The ratio of the decay constants in the ab- 
sence of diffusion effects is X3/X2 = 9; for the 
catalvst narticles with R = 1 cm and D; = 

(18) 
A comparison of the values of the rate con- 

stants for the true reaction scheme and the 
scheme given by Eq. (18) shows that the 
values of the rate constants have been 
reduced by more than an order of magnitude 
by intraparticle diffusion. Even more impor- 
tant is the introduction of nonzero values 
for the rate constants directly connecting 

0 ~A the species A, and A, as seen in scheme (18). 

lo-* cm2/sec the ratio has decreased to 
X,+/A,+ = 3.22. 

TABLE 1 
VALUES OF ‘pi, vi, AND Ait FOR THE REACTION 

SCHEME (15) OCCVRRING WITHIN CATALYST 
PARTICLES WITH R = 1 CM AND 

Di = 1O-2 cnP/m 

Index 

1 0 0 1 0 
2 1 10 0.27 0.27 
3 9 30 0.0967 0.87 

Since for this example the diffusivities of 
all molecular species Ai are equal, the trans- 
formation matrices X and X+ are identical, 
and we can compute the rate constant matrix 
K+ using Eq. (3). We have 

K+ = XAtX-1 

= (i/4 -p -g !.27 w.,,) 

4/g 

( 

4/g 4/g 
l/2 0 -l/2 
l/18 -4/9 l/18 ) 

( 

0.183 -0.387 -0.087 
= -0.097 0.774 -0.097 (17) 

-0.087 -0.387 0.183 1 

The matrix Kf of Eq. (17) corresponds to 
the reaction scheme 
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Hence, in the presence of intraparticle dif- 
fusion effects the scheme consisting of only 
consecutive reaction has been modified so as 
to appear to contain parallel reaction steps 
from A1 to AZ and Aa. 

Typical reaction paths for the diffusion- 
disguised system given by scheme (18) are 
computed using either Eq. (5a) or (10a) and 
are shown by the solid curves in Fig. 1. 
Since the diffusivities of all species Ai are 
equal, the actual reaction scheme and the 
diffusion-disguised scheme both have the 
same set of straight line reaction paths as 
shown in Fig. 1. The straight line reaction 
path with the slowest decay constant is 
the path parallel to the A1A3 side of the 
reaction triangle. The decrease in the ratio 
of the largest decay constant to the smallest 
decay constant,, which is caused by the 
presence of intraparticle diffusion effects, 
is clearly shown by the decrease in the 
relative rates of approach of corresponding 
reaction paths to the straight line reaction 
path with the slowest decay constant; i.e., 
except for the initial and final points on 
corresponding curved reaction paths, the 
diffusion-modified reaction path always lies 
nearer the straight line reaction path with 
the largest decay constant than the corre- 
sponding true reaction path. Hence, diffusion 
effects lead to large changes in catalyst 
selectivity for many initial compositions. 

How extensive is the modification of the 
kinetic scheme (15) by diffusion effects in 
the system under discussion can be seen by 
application of one of the conventional tests 
used to determine if a reaction is consecutive 
or parallel. Using the composition along the 
reaction path determined for an initial com- 
position of pure A1, we plot the ratio of the 
products As/AZ as shown in Fig. 2. The lower 
curve is obtained for the reaction path corre- 
sponding to scheme (15) and has a zero 
intercept at zero conversion as required by 
the consecutive reaction A1 to AZ to A,. The 
upper curve is obtained for the diffusion- 
disguised system of scheme (18). The finite 
intercept at zero conversion indicates a 
parallel reaction step from A, to As. The 
erroneous conclusion about the true kinetic 
mechanism can be discovered only by chang- 
ing the amount of diffusion effect present 

2eol 
a3 

a2 

0.5 - 

0.1 - 
I 

0 5 IO 15 

X A, CONVERTED 

FIG. 2. The effect of diffusion on initial romposi- 
tion ratio. 

in the system; this requires a change in some 
physical parameter of the catalyst such as 
particle radius or diffusivity. 

b. Diffusion effects when all diffusivi- 
ties are not equal. When the diffusivities 
are not all equal the transformation matrix 
X+ is not identical with the transformation 
matrix X and the computation becomes 
more lengthy. Let us examine the compu- 
tation for the same system as above except 
that the catalyst diffusivity constant for the 
molecular species AB is reduced to 10e3 cmz/ 
set with the diffusivity constants for the 
species A1 and AZ remaining at 10e2 cm2/sec. 
In order to make the computation, we need 
to transform the matrix D-‘K into its diag- 
onal form by means of Eq. (I-13). In order 
to use this equation, we need to compute 
the transformation matrix Y, which is com- 
posed of the characteristic vectors of the 
matrix D-‘K; these characteristic vectors 
can be computed by the method described 
by Wei and Prater (5). Using the matrix Y 
determined by this method in Eq. (I-13), 
we obtain 
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( 1 
0. 
1 

250 Ig, &S)~ !48 ;,,,) 
Y t$/H.2 

( 0.741 0.251 0.008 -0.622 -0.118 0.741 -0.095 0.074 0.021 1 (19) 

Y-1 

The matrix q2/R2 in Eq. (19) gives 0, 18.6, 
and 39.4 for the values of ‘pl, (p2, and (p3, 
respectively. These values are used in Eq. 
(12) to calculate the values of vi; they are 
7; = 1, r]2 = 0.153, and 713 = 0.074. Using 
these values in Eq. (I-32), we obtain for the 
diffusion-disguised rate constant matrix K+ 
K+ = [DYJ[(K1/R2)q2nY-‘1 

1 1 1 

= ( 0.25 -0.62 -3.63 ) 0.10 -0.38 2.63 

( 0 0.134 0.009 -0.135 -0.331 0 -0.051 0 0.024 ) 
0.143 -0.466 -0.027 

= ( -0.116 0.695 -0.056 ) (20) 

-0.027 -0.228 0.083 

Thus the diffusion-disguised form of the 
kinetic scheme (15) for the above case is 

0.110 

AI a - Az 

A3 (21) 

The transformation matrix X+ is computed 
from the matrix Kt (Wei and Prater, ref. 5) 
so that Eq. (3) may be used to convert K 
into a diagonal form; we have 

At = (Xt)-‘KtXt (22) 

0.444 0.444 0.444 
A+ = 0.447 0.170 -0.489 

0.109 -0.615 0.045 

0.143 -0.466 -0.027 
0.695 -0.056 

-0.027 -0.228 0.083 

1 
0.096 -1.419 

0.419 

(23) 

Typical reaction paths are computed for 
this system using Eq. (5a) or (lOa) ; these 
are shown in Fig. 3 by the solid curves. The 

FIG. 3. The effect of diffusion in a system where 
the diffusivities of the molecular species are not 
equal. 

straight line reaction paths for the true 
kinetic scheme (15) are shown by the dashed 
lines. We see that, when the diffusivities are 
not all equal, the presence of diffusion effects 
shifts the positions of the straight line reac- 
tion paths. Also, the selectivity is again 
greatly altered for many initial compositions 
as shown by a comparison of the true and 
diffusion disguised reaction paths obtained 
for an initial composition of pure A,. 

2. A Three-Component Irreversible System 
with Consecutive Reactions 

The three-component irreversible system 
kn ha2 

A, --) A2 ---) A3 (24) 

is sufficiently simple so that explicit expres- 
sions can be obtained for Icij+ in terms of the 
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true rate constants k,, and the diffusivities and 
D;. We have 

k31t = kzlq2 ’ - (q3/q2) 
1 - ((P2/(P3>2 

Let us compare the diffusion-disguised 
scheme (28) with the true reaction scheme 

=I0 1 1 

I -k32Dl -D: 
l-- - 

h&3 Da 

Dl D2 

G 53 

ii-32 D2 -’ [--I h D, 

o o 

- 1 o 

Hence, 
cpl = 0 

cp2 = R dkzdD1 

‘~3 = R dkdD2 

00 0 

o$o 
2 

00 g 

, 

(24) for a catalyst bed in a piston flow reactor 
when kz = 1 set-l, k32 = 2 see-‘, D, = 
2 X lo-* cm2/sec, DZ = 1 X 10e2 cm2/sec 
and R = 1 cm. For this case, we have 

0 0 0 
(25) = i 0 1 0 ) (29) 

0 0 2 

Equation (26) gives cpl = 0, cp2 = 7.07, 
and (~3 = 14.14. Using Eq. (12), we obtain 
rll = 1, q2 = 0.364, and t3 = 0.197. The 
value of Kt may now be computed from 

(26) Eq. (27); we have 

/ 0.365 0 O\ 

The values of qi are given by Eq. 12. Hence, 
using Eq. (I-32), we have 

Kt = 

( km 0 0 

( -km ’ - (dd2h/d 
1 - b31cp2>2 

k32q3 0 

[-h-2,2 
1 - (73/d 

1 - ((PZ/(P3)” 
-km 0 

(27) 

Thus the diffusion-disguised reaction scheme 
becomes 

nut 
A,- A2 

where 

Aa- 653) 

k2,t = kzlq2 ’ - ((Pd(Pd2h/d 
1 - @3/cpt)” 

kd = km 

Kt = -0.141 0.394 0 (30) 
-0.22-4 -0.394 0 

The matrices Xt and (Xt)-l are computed 
by the method of Wei and Prater (5) and 
applied to the matrix Kt to obtain A+; 

At = (Xt)-‘KtXt = 

0.365 0 
-0.141 
-o,224 

= 6 i.365 i.3gd (31) 

The values of X; from Eq. (29) and XJ from 
Eq. (31) are used to compute the reaction 
paths for the true and the diffusiondis- 
guised scheme. Typical reaction paths are 
shown in Fig. 4. Again it is seen that, when 
the diffusivities are not equal, the straight 
line reaction paths are shifted. Some reac- 
tion paths are not greatly affected by dif- 
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FIG. 4. The effect of diffusion on the reaction 
paths in an irreversible reaction system. 

fusion, but others (such as for an initial 
composition of pure Al) are considerably 
shifted. 

III. THE IR'FLVEKCE OF INTRAPARTICLE 
DIFFUSION OS THE PERFORMAKCE OF 

STIRRED TASK REACTORS 

Only a short discussion, sufficient to illus- 
trate the formal inclusion of intraparticle 
diffusion in the equations for stirred tank 
reactors, will be given for coupled systems of 
first order reactions. A detailed comparison of 
piston flow and stirred tank reactors is given 
by Wei and Prater (9). Consider the steady 
state operation of a continuously stirred 
tank reactor with a volume 8. Let the frac- 
tional volume occupied by the catalyst be f, 
and the volumetric flow rate of fresh react- 
ants into and products out of the tank be 
V/0, where 0 is the average residence time 
of a molecule in the tank. Equation (1) 
shows that the rate equation for each 
catalyst particle has the same form in both 
the presence and absence of diffusion effects; 
the true rate constant matrix K is merely 
replaced by the diffusion-disguised rate con- 
stant matrix K+. Hence, the usual set of 
algebraic equations hold for the stirred tank 
reactor when diffusion effects are present; 
the true rate constants are merely replaced 
by the diffusion-disguised rate constants. 
These equations, written in matrix form, are 

(V/e)(a” - ao) - fVK+ao = 0 (32) 

where the inlet composition is designated by 
the vector a’, and the outlet composition 

by the vector ao. Solving Eq. (32) for the 
outlet composition vector, we have 

a,, = (I + feK+)-la0 

Using Eq. (3) in Eq. (33), we have 

(33) 

a0 = [I + fflX+A+(X+)-l]-la” 
= { X+[I + feA+](X+)-l)-la” (34) 

since I = X+1(X+)-l. The inverse of the 
product of matrices is the product of the 
inverse of the individual matrices taken in 
reverse order; hence 

a0 = X+[I + feA+]-‘(Xi)-la0 (35) 

When the diffusivities are all equal, we have 
X+ = X and A+ = An. For this special case 
Eq. (35) becomes 

a,, = XII + JBAn]-‘X-‘a” (36) 

Let us compare Eqs. (35) and (36) with the 
equations for the composition at the outlet 
of the piston flow reactor. Let so be the 
length of the piston flow reactor; then the 
composition at the outlet, as a. function of 
the inlet composition a(O), is obtained from 
Eq. (5). We have 

a(s,) = X+ exp (-fAtso/u) (X+)-%(O) (35a) 

and for the case of equal diffusivities 

a(so) = X exp (-fAnso/v)X-’ (36a) 

They differ in that the inverse of the matrices 
(I + jOA+) and (I + joAn) replace the 
matrices of exponentials shown in Eqs. 
(35s) and (36a), respectively. 

Let us now examine the reaction rate 
expression for the stirred tank reactor. In 
terms of the outlet concentrations, which are 
also the ambient concentrations within the 
reactor, the reaction rate expressions are 
given by 

da/d = -feK+a, = -feX+A+(X+)-lao 

(37) 

Using Eq. (35) in Eq. (37) we obtain the 
rate expression in terms of the inlet concen- 
tration; 

da/& = -feX+A+[I + feA+]-l(X+)-lao (38) 

When all diffusivities are equal, Eq. (38) 
becomes 
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da/dt = -jOXAn[I + ffNn]-lX-l&o (39) tially reached in the tank and n* --f 0 since 

If we define an over-all effectiveness matrix, f& becomes infinite. When n = I and 

n* = n(1 +f&in)-’ that includes both dif- @A remains finite, diffusion effects are 

fusion effects and the influence of mixing absent. Then we have a case of pure inlet 

losses, Eq. (39) becomes 
mixing loss, and n* = (I + jOA)-1 (6). 
When n + 0, we have maximum diffusion 

da/dt = -f eXAn*X-lao (40) effects and Q* 3 3/(pi. 

The element qi* of the matrix n* is given by REFERENCES 

vi* = [(i/d +few (41) 1. WEI, J., J. Catdysk, in press. 

When the residence time, 8, approaches zero, 
2. WEI, J., AND PRATER, C. D., to be published. 

a0 +a“ and the terms fexi in Eq. (41) 
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ysis 13, 233 (1962). 
approach zero. Hence, n* = n; this corre- .J. Ibid., p. 236. 
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